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Traditionally, attitude estimation has been performed using a combina-

tion of external attitude sensors and internal three-axis gyroscopes. There

are many studies of three-axis attitude estimation using gyros that read

angular rates. Rate-integrating gyros measure integrated rates or angular

displacements, but three-axis attitude estimation using these types of gyros

has not been as fully investigated. This paper derives a Kalman filtering

framework for attitude estimation using attitude sensors coupled with rate-

integrating gyroscopes. In order to account for correlations introduced by

using these gyros, the state vector must be augmented, compared with fil-

ters using traditional gyros that read angular rates. Two filters are derived

in this paper. The first uses an augmented state-vector form that estimates

attitude, gyro biases, and gyro angular displacements. The second ignores

correlations, leading to a filter that estimates attitude and gyro biases only.

Simulation comparisons are shown for both filters. The work presented in

this paper focuses only on attitude estimation using rate-integrating gy-

ros, but it can easily be extended to other applications such as inertial

navigation, which estimates attitude and position.
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Introduction

Strapdown gyroscopes have been used for many applications, including spacecraft atti-

tude estimation [1], inertial vehicle navigation [2], underwater vehicle navigation [3], robotic

navigation [4], and human navigation systems [5], to name a few. All of these applications

require attitude information. Traditional attitude estimation uses a combination of attitude

sensor information, such as star trackers, with angular rate sensors, commonly known as

gyroscopes [6]. Many spacecraft, including virtually all spacecraft with stringent pointing

and/or maneuvering requirements, are provided with accurate gyros, which are the most

crucial of all the attitude sensors. A great number of attitude filters incorporate gyro infor-

mation as part of the dynamic model rather than using the gyro information as a Kalman

measurement update. This alternative is often referred to as using gyros in the dynamic-

model replacement mode [7]. The reasons for favoring this method are twofold. Firstly, gyro

information may well be much more accurate than the available models of rotational dynam-

ics and torques, and inaccurate dynamic models could actually corrupt the gyro data. The

second reason for using gyros in dynamic replacement mode, which is particularly important

for onboard filtering, is that it requires much less computation.

The attitude kinematics differential equations are a function of the attitude and angular

rate. Therefore, using traditional gyros in dynamic-model replacement mode can be done

theoretically by simply replacing the angular rate in the kinematics model with the gyro

measurement model. Many types of gyros exist, which can be broadly classified by the phys-

ical mechanisms they use: spinning-mass gyros, optical gyros, or Coriolis vibratory gyros.

Rate-integrating gyros (RIGs) generally offer a number of unique advantages compared to

conventional rate gyroscopes, including mechanically unlimited dynamic range, low noise

due to degenerate mode operation, and exceptional scale factor stability [8]. These gyros

do not directly measure angular rate, but rather accumulate angular displacements [9]. The

first RIGs were floating type that had a capability of achieving a drift performance of around

0.01 deg/hour [10]. They also exhibit angle output white noise, also known as readout noise

or electronic noise, in addition to the usual white noise associated with standard gyros [6].

The most common attitude estimator is based on the Kalman filter. For example, the

Kalman filter has been used on numerous spacecraft as the main algorithm to determine

attitude and angular rates [1]. Gyros that read angular rates can easily be put into the

Kalman filter framework [11]. However, this is not straightforward with RIGs. Readout

noise may be large in some RIGs, which causes estimates to degrade. Therefore, this noise

must be properly accounted for in the filter design. Reference [12] shows a steady-state

Kalman filter formulation using spacecraft attitude sensors coupled with RIGs. The state

vector consists of the attitude and RIG biases. However, as shown in this paper, this approach
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ignores correlations which may overestimate the contributions of the RIG output noise to

the angle variance.

Reference [13] provides an analytic steady-state solution of the expected performance of

the Kalman filter using RIGs for a single-axis case. It is shown in that work that when

the readout noise is zero, then the expected performance is identical the single-axis solution

shown in Ref. [14] for gyros that read angular rates. The purpose of the present work is

to extend Ref. [13] to the three-axis case. This involves an augmentation of the standard

gyro model state-vector in order to use the angle outputs of the RIGs in dynamic-model

replacement mode. The attitude parameterization here is based on the quaternion [15] in

a multiplicative extended Kalman filter framework [7, 11]. A reduced-order filter is also

derived that ignores the aforementioned correlations. This form is different from the one

shown in Ref. [12], which uses the attitude matrix for the attitude parameterization and a

steady-state gain. Simulation results are shown to assess the attitude estimation accuracy,

and are also compared with the analytic single-axis solutions. Furthermore, the filters are

compared to assess the circumstances under which the reduced-order form produces results

that are nearly identical to the augmented state-vector form.

The content of this paper is organized as follows. First, the attitude kinematics and

sensor models are reviewed. This is followed by a revisit of single-axis analysis that shows the

effects of ignoring correlations for the reduced-order state formulation. Then, the equations

for the three-axis attitude estimation using RIGs are derived. Both the augmented and

reduced-order forms are shown. Finally, simulation results using a star tracker and RIGs for

spacecraft attitude estimation are shown.

Attitude Kinematics and Sensor Models

This section presents a brief review of the attitude kinematics equation of motion using

quaternions, and of attitude-vector and RIG sensor models. The quaternion is defined by

q ,
[

̺T q4
]T
, with ̺ , [q1 q2 q3]

T = ê sin(ϑ/2) and q4 = cos(ϑ/2), where ê is the axis of

rotation and ϑ is the angle of rotation [15]. Since a four-dimensional vector is used to describe

three rotational degrees of freedom, the quaternion components cannot be independent of

each other. The quaternion satisfies a single constraint given by qTq = 1. The attitude

matrix is related to the quaternion by

A(q) = ΞT (q)Ψ(q) (1)
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with

Ξ(q) ,





q4I3 + [̺×]

−̺T



 (2a)

Ψ(q) ,





q4I3 − [̺×]

−̺T



 (2b)

where I3 is a 3 × 3 identity matrix, and [̺×], called the cross product matrix because

a× b = [a×]b, is defined as

[a×] ,









0 −a3 a2

a3 0 −a1
−a2 a1 0









(3)

Successive rotations can be accomplished using quaternion multiplication. Here the con-

vention of Refs. [11] and [15] is adopted where the quaternions are multiplied in the same

order as the attitude matrix multiplication: A(q′)A(q) = A(q′⊗q). The composition of the

quaternions is bilinear, with

q′ ⊗ q =
[

Ψ(q′)
... q′

]

q =
[

Ξ(q)
... q

]

q′ (4)

The inverse quaternion is given by q−1 =
[

−̺T q4
]T
, and the quaternion kinematics equa-

tion is given by

q̇ =
1

2





ω

0



⊗ q ,
1

2
[ω⊗]q (5)

where ω is the 3× 1 angular rate vector.

Discrete-time unit-vector attitude observations for a single sensor are given by

b̃i = A(q)ri + υi (6)

where b̃i denotes the ith 3 × 1 measurement vector in the body frame, and ri is the ith

known 3 × 1 reference vector. The sensor error-vector υi is assumed to be zero-mean and

approximately Gaussian, satisfying

E {υi} = 03 (7a)

Ri , E
{

υiυ
T
i

}

= σ2
[

I3 − (Ari)(Ari)
T
]

(7b)
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where E{ } denotes expectation, and where 03 denotes a 3 × 1 vector of zeros. The mea-

surement model expressed by Eq. (7b), known as the QUEST measurement model [16,17], is

quite accurate for small field-of-view sensors. Its approximations are discussed in Refs. [18]

and [19], and it has been expanded for large fields-of-view in Ref. [19]. Equation (7b) gives

a rank-deficient R matrix, which would appear to give rise to problems in an estimator such

as the extended Kalman filter (EKF), [20] so this paper uses the simpler, full-rank form

R = σ2I3 (8)

which has been shown to give equivalent results in this context [7,16,21]. A set of N vector

measurements can be concatenated to form the (3N × 1)-component vector

ỹk =















A(q)r1

A(q)r2
...

A(q)rN















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

+















υ1

υ2

...

υN















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

(9a)

Rk = blkdiag
[

σ2
1I3 σ2

2I3 . . . σ2
NI3

]

(9b)

where blkdiag denotes a block diagonal matrix.

The vehicle is assumed to be equipped with n RIGs, which accumulate an n-component

vector ϕ of angles modeled by [13]

ϕ̇ =Mω + β + ηv (10a)

β̇ = ηu (10b)

where β is an n-component vector of biases, and M is an n × 3 matrix containing nominal

gyro alignments, gyro misalignments, and scale factors. It is a general matrix, with the

proviso that it must have rank three. In the simplest case, there are three gyros and M

is the 3 × 3 identity matrix. The n-component vectors ηu and ηv represent uncorrelated

Gaussian white-noise processes satisfying

E{ηu(t)ηT
u (τ)} = Quδ(t− τ) (11a)

E{ηv(t)ηT
v (τ)} = Qvδ(t− τ) (11b)

where δ(t − τ) denotes the Dirac delta function, and where Qu and Qv are diagonal n × n
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spectral density matrices. Measurements of ϕ are given by

ϕ̃ = ϕ+ ve (12)

where ve is a vector of n uncorrelated Gaussian gyro output measurement errors with diag-

onal covariance Qe.

Single-Axis Analysis

In the standard attitude estimation EKF [11] the state vector consists of the attitude

and gyro biases. In this section, the single-axis analysis is revisited to show the reason why

an augmented state vector should be employed when using RIGs in the EKF setting. The

true single-axis attitude angle ϑ obeys the kinematic equation

ϑ̇ = ω (13)

where ω is the true single-axis angular rate. The single-axis RIG model is given by

ϕ̇ = ω + β + ηv (14a)

β̇ = ηu (14b)

where the spectral densities of ηv and ηu are given by σ2
v and σ2

u, respectively. The state

vector is given by x = [ϑ β ϕ]T , and the corresponding estimate is given by x̂ = [ϑ̂ β̂ ϕ̂]T .

Thus the three-component state x obeys the discrete-time propagation equation

xk+1 =









1 0 0

0 1 0

0 δt 1









xk +









1

0

1









∫ tk+1

tk

ω(τ) dτ +









0

Nu(tk+1, tk)

Nv(tk+1, tk)









(15)

where δt , tk+1 − tk is not assumed to be infinitesimal, and the quantities Nu and Nv are

defined by

Nu(tk+1, tk) =

∫ tk+1

tk

ηu(τ) dτ (16a)

Nv(tk+1, tk) =

∫ tk+1

tk

[ηv(τ) + (tk+1 − τ)ηu(τ)] dτ (16b)

Some computations from the Appendix have been used in deriving Eqs. (16).
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The last line of Eq. (15) shows that the unknown quantity
∫ tk+1

tk
ω(τ) dτ is given by

∫ tk+1

tk

ω(τ) dτ = ϕk+1 −
[

0 δt 1
]

xk −Nv(tk+1, tk) (17)

The RIG measurement at the end of the propagation interval is modeled as

ϕ̃k+1 = ϕk+1 + ve (18)

where ve is a zero-mean Gaussian measurement noise with variance σ2
e . It is assumed that

ηu, ηv, and ve are uncorrelated. Substituting Eqs. (17) and (18) into Eq. (15) to eliminate

unknown quantities gives [7]

xk+1 = Φ(δt)xk +









1

0

1









ϕ̃k+1 +









−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve









(19)

where

Φ(δt) =









1 −δt −1

0 1 0

0 0 0









(20)

The state estimate obeys

x̂k+1 = Φ(δt) x̂k +









1

0

1









ϕ̃k+1 (21)

Defining the state error vector ∆x , x− x̂ leads to

∆xk+1 = Φ(δt)∆xk +









−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve









(22)

The error-covariance P , E{∆x∆xT} propagates according to

Pk+1 = Φ(δt)PkΦ
T (δt) +Q(δt) (23)
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where the process noise covariance Q is given by

Q(δt) = E



























−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve

















−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve









T


















=









σ2
vδt+

1
3
σ2
uδt

3 + σ2
e −1

2
σ2
uδt

2 σ2
e

−1
2
σ2
uδt

2 σ2
uδt 0

σ2
e 0 σ2

e









(24)

The superscripts − and +, which are generally used to distinguish pre-update and post-

update quantities, do not appear in these equations because the dynamic model replacement

mode effectively combines a dynamic propagation and a gyro measurement update in a

single step. These superscripts will make their appearance when a discrete-time attitude

measurement update is considered.

It is easy to show by mathematical induction that propagation by ℓ steps gives

Pk+ℓ = Φ(ℓδt)PkΦ
T (ℓδt) +Q(ℓδt) (25)

This equation has two interesting properties. The first is that it depends only on the total

propagation time ℓδt, not on ℓ and δt separately. The second is that the noise term σe does

not accumulate, so that the covariance only depends on the output noise of the last readout.

Equation (19) obtains ϕ̂k from the state vector xk. Another approach is to assume that

ϕ̂k = ϕ̃k, and ∆ϕk = vek , where vek is zero-mean Gaussian measurement noise with variance

σ2
e independent of vek+1

, which has simply been called ve up to this point. With these

modifications, ϕk can be omitted from the state vector, leaving a two-component (reduced)

state vector xr = [ϑ β]T , and

x̂r
k+1 = Φ̃(δt)x̂r

k +





1

0



 (ϕ̃k+1 − ϕ̃k) (26a)

∆xr
k+1 = Φ̃(δt)∆xr

k +





−Nv(tk+1, tk)− vek+1
+ vek

Nu(tk+1, tk)



 (26b)

where

Φ̃(δt) =





1 −δt
0 1



 (27)

This would seem to be an improvement, because it reduces the size of the state vector and
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covariance matrix. It is somewhat ad hoc, though, because it is not completely clear what

to use as a replacement for Eq. (19). Another and more significant problem is that the

measurement noises at times tk and tk+1 are correlated.

The reduced error-covariance follows

P r
k+1 = Φ̃(δt)P r

k Φ̃
T (δt) +Qr(δt) (28)

where

Qr(δt) = E











−Nv − vek+1
+ vek

Nu









−Nv − vek+1
+ vek

Nu





T





=





σ2
vδt+

1
3
σ2
uδt

3 + 2σ2
e −1

2
σ2
uδt

2

−1
2
σ2
uδt

2 σ2
uδt





(29)

Iterating this equation ℓ times gives

P r
k+ℓ = Φ̃(ℓδt)P r

k Φ̃
T (ℓδt)

+





σ2
v(ℓδt) +

1
3
σ2
u(ℓδt)

3 + 2ℓσ2
e −1

2
σ2
u(ℓδt)

2

−1
2
σ2
u(ℓδt)

2 σ2
u(ℓδt)





(30)

This shows that ignoring the correlations in the measurements greatly overestimates the

contributions of the RIG output noise to the angle variance. The upper left corner of Q(ℓδt)

in Eq. (25) contains the contribution σ2
e , while the upper left corner of the corresponding

matrix in Eq. (30) contains the contribution 2ℓσ2
e . Correct handling of the correlations

causes the successive measurement output errors to cancel out, leaving only the last one.

This provides the motivation for augmenting the state vector employed in the standard

attitude estimation EKF of Ref. [11], which assumes direct measurements of the angular

rate instead of the RIG-type measurements that are assumed here.

Rate-Integrating Gyro-Based Kalman Filter

In this section, the RIG-based multiplicative extended Kalman filter (MEKF) is derived.

First, the propagation equations are derived, and then the update equations are shown.

9 of 38



Propagation Equations

The 4 + 2n-component “global” truth state vector is given by

xbig =









q

β

ϕ









(31)

where β is an n-component vector of gyro drift biases, and ϕ is the n-component vector of

angles accumulated internally by the RIGs. The components of the global state vector obey

the following truth-dynamics equations:

q̇ =
1

2
[ω⊗]q (32a)

β̇ = ηu (32b)

ϕ̇ =Mω + β + ηv (32c)

where ω is the true angular rate vector. Equation (32) is the generalization of Eqs. (13)

and (14) to three space dimensions and n gyros. Note that the angular rate vector does not

appear as a component of the state vector. The global state estimates obey the following

dynamic equations:

˙̂q =
1

2
[ω̂⊗]q̂ (33a)

˙̂
β = 03 (33b)

˙̂ϕ =Mω̂ + β̂ (33c)

The finite-time propagation of these equations is

q̂k+1 = exp

(

1

2

[∫ tk+1

tk

ω̂(τ) dτ ⊗
])

q̂k (34a)

β̂k+1 = β̂k (34b)

ϕ̂k+1 = ϕ̂k +M

∫ tk+1

tk

ω̂(τ) dτ + β̂ δt (34c)

Equation (34a) requires the customary assumption that any change in the orientation of the

rotation axis over the time interval δt = tk+1 − tk is negligible. The quantity β̂ is written

without a time argument in Eq. (34c) and all the subsequent equations, because Eq. (33b)

shows that it is constant between gyro measurements.

The essence of using RIGs in dynamic-model replacement mode is to obtain the angular
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rates from the gyros. Thus the integrated rates are regarded as the unknowns rather than

ϕ̂k+1 in Eq. (34c), and this equation is solved for these quantities to obtain

ψ̂k+1, k ,

∫ tk+1

tk

ω̂(τ) dτ =ML
(

ϕ̃k+1 − ϕ̂k − β̂ δt
)

(35)

where ML is a left inverse of M , i.e. a matrix satisfying MLM = I3. This matrix will be

discussed in detail later.

Substituting Eq. (35) into Eq. (34a) leads to [7]

q̂k+1 = exp

(

1

2
[ψ̂k+1, k⊗]

)

q̂k

=

{

cos

(

ψ̂k+1, k

2

)

I4 + sin

(

ψ̂k+1, k

2

)

[êk+1, k⊗]

}

q̂k

(36)

where I4 is a 4 × 4 identity matrix, and the rotation angle ψ̂k+1, k and rotation axis unit

vector êk+1, k have the explicit forms

ψ̂k+1, k = ‖MLϕ̂k+1 −MLϕ̂k −MLβ̂ δt‖ (37a)

êk+1, k =
[

MLϕ̂k+1 −MLϕ̂k −MLβ̂ δt
]

/ψ̂k+1, k (37b)

These forms are chosen to show that the attitude estimator does not need to know the n-

component vectors β̂ and ϕ̂, but only the three-component vectors MLβ̂ and MLϕ̂. Thus

the effective state is the ten-component vector

x =









q

MLβ

MLϕ









(38)

Equations (36) and (37) show that the quaternion propagation needs the quantities MLβ̂,

MLϕ̂k, andM
Lϕ̂k+1. The values ofM

Lβ̂ andMLϕ̂k are retained from the previous update,

which may be from a gyro measurement or a measurement by some different sensor. The

dynamic-model replacement mode for RIGs sets MLϕ̂k+1 = MLϕ̃k+1, where ϕ̃k+1 is the

vector of RIG outputs at time tk+1. This substitution makes it unnecessary to propagate the

estimates of the RIG accumulated angles, and it has the result that the propagation of the

state estimates is straightforward with the usual fixed-axis approximation for closed-form

quaternion propagation.

This is analogous to using the vector of rate gyro outputs, denoted by ω̃(t), to compute

the rate estimate ω̂(t) =ML[ω̃(t)− β̂] when rate gyros are used in dynamic-model replace-
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ment mode [11]. In this application, the integral in Eq. (34a) is evaluated continuously in

principle, but uses some kind of low-order hold of discretely sampled rate gyro outputs in

practice. The RIG propagation does not require any kind of hold, because the RIGs actually

perform the continuous integration of the components along their input axes of the true

body rates over the time interval δt.

The MEKF represents the attitude error in terms of a three-vector δϑ as [7, 11]

q = δq(δϑ)⊗ q̂ (39)

so that a reduced, nine-component, “local” error-state vector can be used, which is given by

∆x =









δϑ

ML∆β

ML∆ϕ









(40)

where ∆β , β − β̂ and ∆ϕ , ϕ − ϕ̂. Note that the MEKF defines δϑ by Eq. (39), not

as the difference between a true value and an expectation. The components of ∆x obey the

dynamic equations [7, 11]

δϑ̇ = −[ω̂×]δϑ+∆ω (41a)

ML∆β̇ =MLηu (41b)

ML∆ϕ̇ =ML(M∆ω +∆β + ηv) = ∆ω +ML∆β +MLηv (41c)

where ∆ω , ω − ω̂.
Equation (41) can be written in matrix form as

∆ẋ = F ∆x+









I3

03×3

I3









∆ω +









03

MLηu

MLηv









(42)

where 03×3 is a 3× 3 matrix of zeros, and

F ,









−[ω̂×] 03×3 03×3

03×3 03×3 03×3

03×3 I3 03×3









(43)
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If Φ(t, t0) is the solution of Φ̇(t, t0) = F Φ(t, t0) with initial condition Φ(t0, t0) = I9, then

∆xk+1 = Φ(tk+1, tk)∆xk +

∫ tk+1

tk

Φ(tk+1, τ)

















I3

03×3

I3









∆ω(τ) +









03

MLηu(τ)

MLηv(τ)

















dτ (44)

The state transition matrix Φ(tk+1, tk) is given by

Φ(tk+1, tk) =









Φϑϑ(tk+1, tk) 03×3 03×3

03×3 I3 03×3

03×3 δtI3 I3









(45)

where Φ̇ϑϑ(t, t0) = −[ω̂×]Φϑϑ(t, t0) with initial condition Φϑϑ(t0, t0) = I3. Assuming again

that any motion of the rotation axis over δt is negligible gives [7]

Φϑϑ(tk+1, tk) = I3 − sin(ψ̂k+1, k)[êk+1, k×] + [1− cos(ψ̂k+1, k)][êk+1, k×]2 (46)

with ψ̂k+1, k and êk+1, k given by Eq. (37). Substituting Eq. (45) into Eq. (44) yields

∆xk+1 = Φ(tk+1, tk)∆xk +

∫ tk+1

tk









Φϑϑ(tk+1, τ)

03×3

I3









∆ω(τ) dτ +









03

MLNu(tk+1, tk)

MLNv(tk+1, tk)









(47)

where

Nu(tk+1, tk) =

∫ tk+1

tk

ηu(τ) dτ (48a)

Nv(tk+1, tk) =

∫ tk+1

tk

[ηv(τ) + (tk+1 − τ)ηu(τ)] dτ (48b)

The bottom three rows of Eq. (47) give

∫ tk+1

tk

∆ω(τ) dτ =
[

03×3 03×3 I3

]

∆xk+1 −
[

03×3 δtI3 I3

]

∆xk −MLNv(tk+1, tk) (49)

This equation follows directly from Eqs. (33c), (34c), and (35), and the definitions of

∆β, ∆ϕ, ∆ω, and Nv. It is not possible to simply substitute this into Eq. (47) as was

done in deriving Eq. (19), because the first three rows of Eq. (47) contain the integral

13 of 38



∫ tk+1

tk
Φϑϑ(tk+1, τ)∆ω(τ) dτ . Accomplishing this substitution requires the approximation:

∫ tk+1

tk

Φϑϑ(tk+1, τ)∆ω(τ) dτ ≈ Φ̄(tk+1, tk)

∫ tk+1

tk

∆ω(τ) dτ (50)

where Φ̄(tk+1, tk) represents some kind of average of Φϑϑ(tk+1, τ) over the integration span.

The following form is chosen for Φ̄(tk+1, tk):

Φ̄(tk+1, tk) =
1

δt

∫ tk+1

tk

Φϑϑ(tk+1, τ) dτ (51)

This form has two advantages. The first is that it provides an exact representation of
∫ tk+1

tk
Φϑϑ(tk+1, τ)∆ω(τ) dτ if ∆ω is constant over the integration span. It is not expected

that ∆ω is constant over the integration span, and the fact that this quantity is unknown

is what requires the use of Eq. (49), but the choice for Φ̄(tk+1, tk) at least assures that

any constant part of ∆ω is correctly accounted for. The second advantage of this choice

for Φ̄(tk+1, tk) is that it leads to an estimator that most closely resembles the conventional

MEKF with rate gyros in model replacement mode, as will be seen later. The approximation

that ω̂ is constant in both magnitude and direction over the integration span allows the

integral to be evaluated in closed-form to obtain

Φ̄(tk+1, tk) = I3 −
1− cos(ψ̂k+1, k)

ψ̂k+1, k

[êk+1, k×] +
ψ̂k+1, k − sin(ψ̂k+1, k)

ψ̂k+1, k

[êk+1, k×]2 (52)

Some special care must be taken to avoid division by zero if the rotation angle is zero.

Although approximations of the kind used here for the quaternion and covariance prop-

agation are often made simply for computational convenience, something like Eq. (50) is

absolutely necessary in this RIG formulation, because the RIGs do not know that they are

in a rotating frame; they just integrate the components of the angular rates on their input

axes without knowing anything about the rates on the cross axes or Eulerian kinematics.
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Using the approximation of Eq. (50) and then substituting Eq. (49) into Eq. (47) give

∆xk+1 ≈ Φ(tk+1, tk)∆xk +









Φ̄(tk+1, tk)

03×3

I3









∫ tk+1

tk

∆ω(τ) dτ +









03

MLNu(tk+1, tk)

MLNv(tk+1, tk)









= Φ(tk+1, tk)∆xk +









Φ̄(tk+1, tk)

03×3

I3









{[

03×3 03×3 I3

]

∆xk+1

−
[

03×3 δtI3 I3

]

∆xk −MLNv(tk+1, tk)
}

+









03

MLNu(tk+1, tk)

MLNv(tk+1, tk)









(53)

which gives









I3 03×3 −Φ̄(tk+1, tk)

03×3 I3 03×3

03×3 03×3 03×3









∆xk+1 =









Φϑϑ(tk+1, tk) −Φ̄(tk+1, tk) δt −Φ̄(tk+1, tk)

03×3 I3 03×3

03×3 03×3 03×3









∆xk

+









−Φ̄(tk+1, tk)M
LNv(tk+1, tk)

MLNu(tk+1, tk)

03









(54)

The bottom three rows of this equation give 03 = 03, so they contain no information. This

is not surprising because they have been used to substitute the integral of the angular rate

vector into Eq. (47). The middle three rows give a perfectly reasonable equation for ∆βk+1.

The top three rows give

δϑk+1 − Φ̄(tk+1, tk)M
L∆ϕk+1 =

[

Φϑϑ(tk+1, tk) −Φ̄(tk+1, tk) δt −Φ̄(tk+1, tk)
]

∆xk

− Φ̄(tk+1, tk)M
LNv(tk+1, tk)

(55)

This has expectation

δϑ̂k+1 = Φϑϑ(tk+1, tk)δϑ̂k (56)

because ∆β, ∆ϕ, and Nv are all defined to have zero mean. The MEKF has reset δϑ̂ to

zero after the last measurement update, so Eq. (56) says that it remains zero through all
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the following RIG propagation steps. This obviates the need to propagate this expectation,

as is always assumed in the MEKF, and it also means that δϑ really is an error. Equation

(55) provides an equation for δϑk+1 − Φ̄(tk+1, tk)M
L∆ϕk+1, but not for δϑk+1 and ∆ϕk+1

separately. More information is clearly needed, which is obtained by recalling that the

dynamic-model replacement mode sets ϕ̂k+1 = ϕ̃k+1. It follows from Eq. (12) that

ML∆ϕk+1 =ML [ϕk+1 − ϕ̂k+1] =ML [ϕk+1 − ϕ̃k+1] = −MLve (57)

This is used to replace the information-free bottom three rows of Eq. (54), and is also

substituted into the top three rows, giving

∆xk+1 =









Φϑϑ(tk+1, tk) −Φ̄(tk+1, tk) δt −Φ̄(tk+1, tk)

03×3 I3 03×3

03×3 03×3 03×3









∆xk

+ blkdiag
([

Φ̄(tk+1, tk)M
L ML ML

])









−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve









, Φeff(tk+1, tk)∆xk +G(tk+1, tk)









−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve









(58)

which is the three-axis equivalent of Eq. (22).

Note that the quantity Nv(tk+1, tk), which contains the gyro process noise contributions

to the attitude propagation errors, has moved from the bottom three rows (theML∆ϕ rows)

of Eq. (47) to the top three rows (the δϑ rows) in Eq. (58). This is characteristic of the

dynamic-model replacement mode. This mode takes the RIG data very seriously, possibly

too seriously, believing that the only error in the RIG data is the output noise ve. An

estimator using rate gyros in the dynamic-model replacement mode has nothing analogous

to the ML∆ϕ rows, so it puts the gyro process noise in the only available place, the δϑ

rows. That estimator takes the gyro data equally seriously, if not more so.

The error-covariance propagates according to

Pk+1 = Φeff(tk+1, tk)Pk Φ
T
eff(tk+1, tk) +G(tk+1, tk)QG

T (tk+1, tk) (59)
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The process noise covariance Q is given by

Q = E



























−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve

















−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve









T


















=









Qvδt +
1
3
Quδt

3 +Qe −1
2
Quδt

2 Qe

−1
2
Quδt

2 Quδt 03×3

Qe 03×3 Qe









(60)

These equations are the three-axis equivalents of Eqs. (23) and (24). Using the notation

Q̃e ,MLQe(M
L)T and

P =









Pϑϑ P T
βϑ P T

ϕϑ

Pβϑ Pββ Pβϕ

Pϕϑ P T
βϕ Pϕϕ









=









P̃
P T
ϕϑ

Pβϕ

Pϕϑ P T
βϕ

Pϕϕ









(61)

where

P̃ ,





Pϑϑ P T
βϑ

Pβϑ Pββ



 (62)

Eq. (59) can be written as

Pk+1 =









P̃k+1

Φ̄(tk+1, tk) Q̃e

03×3

Q̃eΦ̄
T (tk+1, tk) 03×3 Q̃e









(63)

with

P̃k+1 = Φ̃(tk+1, tk)
[

P̃k +∆P̃ (tk+1, tk)
]

Φ̃T (tk+1, tk) + Q̃(tk+1, tk) (64)

where Φ̃(tk+1, tk) and Q̃(tk+1, tk) are the upper left 6 × 6 corners of Φeff(tk+1, tk) and
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G(tk+1, tk)QG
T (tk+1, tk), respectively, and

∆P̃ (tk+1, tk) = Φ̃−1(tk+1, tk)





Φ̄(tk+1, tk)Pϕϕk
Φ̄T (tk+1, tk) 03×3

03×3 03×3



 Φ̃−T (tk+1, tk)

−





P T
ϕϑk

Φ̄T (tk+1, tk) 03×3

Pβϕk
Φ̄T (tk+1, tk) 03×3



 Φ̃−T (tk+1, tk)

− Φ̃−1(tk+1, tk)





Φ̄(tk+1, tk)Pϕϑk
Φ̄(tk+1, tk)P

T
βϕk

03×3 03×3





(65)

Equations (46) and (52), and [êk+1, k×]3 = −[êk+1, k×] show that Φϑϑ(tk+1, tk) is orthogonal

and ΦT
ϑϑ(tk+1, tk)Φ̄(tk+1, tk) = Φ̄T (tk+1, tk), so

Φ̃−1(tk+1, tk) =





ΦT
ϑϑ(tk+1, tk) Φ̄T (tk+1, tk) δt

03×3 I3



 (66)

Equation (65) can now be re-expressed as

∆P̃ (tk+1, tk) =





∆P̃ϑϑ(tk+1, tk) −Φ̄T (tk+1, tk)P
T
βϕk

−Pβϕk
Φ̄(tk+1, tk) 03×3



 (67)

where

∆P̃ϑϑ(tk+1, tk) , Φ̄T (tk+1, tk)Pϕϕk
Φ̄(tk+1, tk)− P T

ϕϑk
Φ̄(tk+1, tk)− Φ̄T (tk+1, tk)Pϕϑk

(68)

Equations (63), (64), (67), and (68) are computationally less expensive than Eq. (59), and

they also serve better to show the relation between the RIG formulation and the conventional

formulation.

Cancellation of Gyro Measurement Output Noise

The one-dimensional case shown previously has the property that the gyro measurement

output noise does not propagate forward in time, which is to say that the output noise

added at one gyro propagation step exactly cancels out in the next propagation step. This

is reasonable because a measurement error in one RIG output leads to an incremental angle

error at that step but also to an incremental angle error of equal magnitude but opposite

sign at the next step. It is useful to see if this property holds in the three-dimensional

case. Consider two successive gyro propagation steps, from tk to tk+1 and from tk+1 to tk+2.
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Equation (63) states that Pβϕk+1
= 03×3, Pϕϑk+1

= Q̃eΦ̄
T (tk+1, tk), and Pϕϕk+1

= Q̃e, so

Eqs. (63), (65), and (67) give

Pk+2 =









P̃k+2

Φ̄(tk+2, tk+1) Q̃e

03×3

Q̃eΦ̄
T (tk+2, tk+1) 03×3 Q̃e









(69)

with

P̃k+2 = Φ̃(tk+2, tk+1)
[

P̃k+1 +∆P̃ (tk+2, tk+1)
]

Φ̃T (tk+2, tk+1) + Q̃(tk+2, tk+1) (70)

and

∆P̃ (tk+2, tk+1) =





∆P̃ϑϑ(tk+2, tk+1) −Φ̄T (tk+2, tk+1)P
T
βϕk+1

−Pβϕk+1
Φ̄(tk+2, tk+1) 03×3





=





∆P̃ϑϑ(tk+2, tk+1) 03×3

03×3 03×3





(71)

where

∆P̃ϑϑ(tk+2, tk+1) = Φ̄T (tk+2, tk+1)Pϕϕk+1
Φ̄(tk+2, tk+1)− P T

ϕϑk+1
Φ̄(tk+2, tk+1)

− Φ̄T (tk+2, tk+1)Pϕϑk+1

= Φ̄T (tk+2, tk+1) Q̃e Φ̄(tk+2, tk+1)− Φ̄(tk+1, tk) Q̃eΦ̄(tk+2, tk+1)

− Φ̄T (tk+2, tk+1) Q̃e Φ̄
T (tk+1, tk)

=
[

Φ̄T (tk+2, tk+1)− Φ̄(tk+1, tk)
]

Q̃e

[

Φ̄(tk+2, tk+1)− Φ̄T (tk+1, tk)
]

− Φ̄(tk+1, tk) Q̃e Φ̄
T (tk+1, tk)

(72)

The Q̃e terms in Eq. (69) and the Q̃(tk+2, tk+1) term in Eq. (70) contain RIG output noise

only from tk+2, so RIG output noise from tk+1 can find its way into Pk+2 only through P̃k+1

and ∆P̃ (tk+2, tk+1). The only contribution to P̃k+1 from RIG output noise at tk+1 is a term

Φ̄(tk+1, tk) Q̃e Φ̄
T (tk+1, tk) in the upper left 3 × 3 corner coming from the same corner of

Q̃(tk+1, tk), and this term is exactly cancelled by the −Φ̄(tk+1, tk) Q̃e Φ̄
T (tk+1, tk) term in

∆P̃ϑϑ(tk+2, tk+1). Thus the contribution to Pk+2 from RIG output noise at tk+1 vanishes if
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and only if

03×3 = Φ̄T (tk+2, tk+1)− Φ̄(tk+1, tk)

=
1− cos(ψ̂k+2, k+1)

ψ̂k+2, k+1

[êk+2, k+1×] +
ψ̂k+2, k+1 − sin(ψ̂k+2, k+1)

ψ̂k+2, k+1

[êk+2, k+1×]2

+
1− cos(ψ̂k+1, k)

ψ̂k+1, k

[êk+1, k×]− ψ̂k+1, k − sin(ψ̂k+1, k)

ψ̂k+1, k

[êk+1, k×]2

(73)

Examination of Eq. (73) shows that this cancellation happens if and only if êk+2, k+1 =

êk+1, k , ê and either ψ̂k+2, k+1 = −ψ̂k+1, k or ψ̂k+1, k = 2πn and ψ̂k+2, k+1 = 2πm, where n

and m are nonzero integers. The matrices [ψ̂k+1, k⊗] and [ψ̂k+2, k+1⊗] commute in both of

these cases, so Eq. (36) gives

q̂k+2 = exp

(

1

2
[ψ̂k+2, k+1⊗]

)

q̂k+1

= exp

(

1

2
[ψ̂k+2, k+1⊗]

){

exp

(

1

2
[ψ̂k+1, k⊗]

)

q̂k

}

= exp

(

1

2

[(

ψ̂k+2, k+1 + ψ̂k+1, k

)

⊗
]

)

q̂k

(74)

The case 03 = ψ̂k+2, k+1+ψ̂k+1, k =
∫ tk+1

tk
ω̂(τ) dτ , which gives q̂k+2 = q̂k, includes the special

case that ω̂ = 03 over the entire span from tk to tk+2. It is not surprising that the output

error does not propagate forward if ω̂ = 03, because the estimator has no coupling between

the coordinate axes in this case, so the three-dimensional case looks like three independent

single-axis cases for which it is known that the cancellation is exact. The less likely case that

ψ̂k+1, k = 2πnê and ψ̂k+2, k+1 = 2πmê gives q̂k+2 = (−1)n+mq̂k, so the attitude matrices at

tk and tk+2 are identical in all the three-axis cases for which the cancellation is exact.

If êk+2, k+1 = êk+1, k but ψ̂k+1, k and ψ̂k+2, k+1 do not satisfy either of the conditions for

cancellation specified below Eq. (73), the contribution to Pk+2 from RIG output noise at

tk+1 does not vanish because

Φ̄T (tk+2, tk+1)− Φ̄(tk+1, tk) =

[

1− cos(ψ̂k+2, k+1)

ψ̂k+2, k+1

+
1− cos(ψ̂k+1, k)

ψ̂k+1, k

]

[ê×]

−
[

sin(ψ̂k+2, k+1)

ψ̂k+2, k+1

− sin(ψ̂k+1, k)

ψ̂k+1, k

]

[ê×]2 6= 03×3

(75)

The lack of cancellation in this case is somewhat surprising, because the matrices [ψ̂k+1, k⊗]
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and [ψ̂k+2, k+1⊗] commute, Eq. (74) holds, and Eq. (37) gives

q̂k+2 = exp

(

1

2

[

ML(ϕ̂k+2 − ϕ̂k − 2β̂ δt)⊗
]

)

q̂k (76)

with the RIG output at time tk+1 cancelling out. Equation (75) reveals two interesting

properties, though. The first is that the contribution of RIG output noise at tk+1 to Pϑϑk+2
,

Pβϑk+2
, and Pββk+2

in this case is entirely in the plane perpendicular to ê. This is consistent

with the observation that if ω̂ is always along a fixed axis, this axis decouples dynamically

from the other two axes, so estimation of the rotation about this axis is just like the one-

dimensional case for which RIG output noise does not propagate forward in time. The

dynamics of the two axes perpendicular to ω̂ are coupled by the rotation, though; and the

fact that the contribution of RIG output noise at tk+1 to the covariance at tk+2 is in the plane

perpendicular to ω̂ may help to explain why it vanishes only if the attitude matrices at tk

and tk+2 are identical. The second interesting property of Eq. (75) is that the contribution

of RIG output noise at tk+1 to the covariance at tk+2 is of order (ψ̂k+2, k+1 + ψ̂k+1, k)
2 for

small rotations.

Cancellation is not exact in the general case, but there is near-cancellation for small

rotations, and the fundamental function of the additional three components of the state

vector in the RIG formulation is to ensure this cancellation or near-cancellation.

Angular Rate Estimate

As was observed below Eq (32), the angular rate is not part of the state vector of this

estimator. The rate is an important quantity of interest, however, and is typically used in

a controller. Rate-integrating gyros do not output an instantaneous rate measurement, but

they can provide an estimate of the average rate between times tk and tk+1. Equation (35)

with ϕ̂k+1 = ϕ̃k+1, gives

ω̂k+1,k =
1

δt
ML

(

ϕ̃k+1 − ϕ̂k − β̂ δt
)

(77)

Equation (32) gives the true average rate over this time interval as

ωk+1,k =
1

δt

∫ tk+1

tk

ω(τ) dτ =
1

δt
ML

{

ϕk+1 − ϕk −
∫ tk+1

tk

[β(τ) + ηv(τ)] dτ

}

=
1

δt
ML [ϕk+1 − ϕk − βkδt−Nv(tk+1, tk)]

(78)
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The error in the angular rate estimate is

∆ωk+1,k = ωk+1,k − ω̂k+1,k

=
1

δt
ML [−ve −∆ϕk −∆βkδt−Nv(tk+1, tk)]

(79)

The covariance of the angular rate error, Pωωk+1
, E{∆ωk+1,k ∆ω

T
k+1,k}, is given by

Pωωk+1
=

1

δt2

(

Q̃e + Pϕϕk

)

+
1

δt

(

Q̃v + Pϕβk
+ P T

ϕβk

)

+ Pββk
+

1

3
Q̃uδt (80)

where Q̃u , MLQu(M
L)T and Q̃v ,MLQv(M

L)T . The Appendix contains details useful in

this derivation. Equation (63) gives some simplifications if Pk is the covariance immediately

following a gyro propagation.

Gyro Output Matrix Inverse

The left inverse ML is now discussed. This is the usual inverse if there are only three gyros,

leaving no opportunity to assign weights to the gyro measurements. With more than three

gyros, the left inverse can be written as

ML = (MTW M)−1MTW (81)

where the symmetric positive semi-definite weight matrix W must be chosen so that the

inverse in Eq. (81) exists. The simplest choice is W = In, but it might be better to choose

gyro weights inversely proportional to their error variances. The form of the upper left

3 × 3 corner of Q suggests that W =
(

Qvδt+
1
3
Quδt

3 +Qe

)

−1
be chosen. The components

of the diagonal matrices Qv, Qu, and Qe can be different on the different axes, but the

more common case is that all the gyros have identical noise characteristics, so Qv = σ2
vIn,

Qu = σ2
uIn, and Qe = σ2

eIn. In this case, the above choice for W makes it a multiple of

the identity matrix, and it is clear from Eq. (81) that choosing W to be any multiple of the

identity is equivalent to choosing it to be equal to the identity matrix. If all the gyros have

identical noise characteristics, then, there is no reason to choose W to be anything other

than the identity matrix.

Measurement Update Equations

The measurement update equations generally follow the the conventional MEKF presented

in Ref. [7]. This section presents only the special features of the RIG-based estimator with

the m-component attitude measurement model of Eq. (9). The detailed equations can be

found in Table 1.
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The state estimate and covariance prior to the measurement update are denoted by

x̂− =









q̂−

MLβ̂−

MLϕ̂−









(82)

and P̂− respectively. These can follow either a gyro propagation or an attitude measurement

update with no intervening propagation step. The sensitivity matrix for the measurement

vector of Eq. (9) is

Hk =
[

H̃k 03N×3 03N×3

]

(83)

with [7, 11]

H̃k ,









[A(q̂−)r1×]
...

[A(q̂−)rN×]









∣

∣

∣

∣

∣

∣

∣

∣

tk

(84)

The Kalman gain and the covariance update are given by

Kk = P−

k H
T
k

(

HkP
−

k H
T
k +Rk

)

−1
= P−

k

[

H̃k 03N×6

]T (

H̃kP
−

ϑϑk
H̃T

k +Rk

)

−1

(85a)

P+
k =

(

I9 −Kk

[

H̃k 03N×6

])

P−

k (85b)

where the superscript + indicates a post-update quantity.

Gyro Measurement Output Noise-Free Case

This subsection compares the filter in the limiting case of negligibly small gyro measurement

output noise with the conventional MEKF presented in Ref. [7]. When Q̃e = 03×3, the

rightmost three columns and the bottom three rows of the 9 × 9 covariance matrix Pk

are identically zero, as is the matrix ∆P̃ (tk+1, tk). The matrix Φ̃(tk+1, tk) is the same as

the matrix Φk in the traditional MEKF, so the covariance propagation is the same as the

traditional MEKF except for a different computation of Q. For consistency with Ref. [7],

assume that there are three gyros with identical noise characteristics and with M = I3, so

Q̃v = σ2
vI3, and Q̃v = σ2

uI3. The conventional MEKF, with notation changed to agree with

this paper, gives the process noise covariance matrix as [7]

Qk =





Q11k Q12k

QT
12k

Q22k



 (86)
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with

Q22k = (σ2
uδt)I3 (87)

Q12k = −1

2
σ2
uδt

2

{

I3 − 2
ψ̂k+1, k − sin(ψ̂k+1, k)

ψ̂2
k+1, k

[êk+1, k×]

+
ψ̂2
k+1, k + 2 cos(ψ̂k+1, k)− 2

ψ̂2
k+1, k

[êk+1, k×]2

}

≈ −1

2
σ2
uδt

2

{

I3 −
1

3
[ψ̂k+1, k×] +

1

12
[ψ̂k+1, k×]2

}

(88)

and

Q11k = (σ2
vδt)I3 +

1

3
σ2
uδt

3

{

I3 −
6ψ̂k+1, k − 6 sin(ψ̂k+1, k)− ψ̂3

k+1, k

ψ̂3
k+1, k

[êk+1, k×]2

}

≈ (σ2
vδt)I3 +

1

3
σ2
uδt

3

{

I3 +
1

20
[ψ̂k+1, k×]2

}

(89)

The approximations are the lowest-order terms in ψ̂k+1, k.

The corresponding matrix in the RIG case using Φ̄(tk+1, tk) is

Q̃k+1, k =





Q̃11 Q̃12

Q̃T
12 Q̃22



 (90)

with

Q̃22 = (σ2
uδt)I3 (91)

Q̃12 = −1

2
(σ2

uδt
2)Φ̄(t1, t0)

= −1

2
σ2
uδt

2

{

I3 −
1− cos(ψ̂k+1, k)

ψ̂k+1, k

[êk+1, k×] +
ψ̂k+1, k − sin(ψ̂k+1, k)

ψ̂k+1, k

[êk+1, k×]2

}

≈ −1

2
σ2
uδt

2

{

I3 −
1

2
[ψ̂k+1, k×] +

1

6
[ψ̂k+1, k×]2

}

(92)

and

Q̃11 =

(

σ2
vδt+

1

3
σ2
uδt

3

)

Φ̄(t1, t0)Φ̄
T (t1, t0)

=

(

σ2
vδt+

1

3
σ2
uδt

3

)

{

I3 +
ψ̂2
k+1, k + 2 cos(ψ̂k+1, k)− 2

ψ̂2
k+1, k

[êk+1, k×]2

}

≈
(

σ2
vδt+

1

3
σ2
uδt

3

){

I3 +
1

12
[ψ̂k+1, k×]2

}

(93)
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The process noise covariance the same in lowest (zeroth) order in ψ̂k+1, k but Q11 and Q12

differ in higher orders. The zeroth order approximation is generally adequate in practice,

as explained in Ref. [7]. The similarity of the two approaches is misleading, because they

compute the incremental angle ψ̂k+1, k ,
∫ tk+1

tk
ω̂(τ) dτ differently, in principle. In the con-

ventional method, the rate gyros are assumed to output a continuous rate ω̂(t), which is

integrated by the estimator. The RIG estimator, in contrast, computes ψ̂k+1, k as a finite

difference of ϕ̃k values output by the RIGs at discrete times.

Reduced Rate-Integrating Gyro-Based Kalman Filter

This section presents the reduced-order RIG-based MEKF. In this case the integral of

the angular rate is estimated using

ψ̂k+1, k ,

∫ tk+1

tk

ω̂(τ) dτ =ML
(

ϕ̃k+1 − ϕ̃k − β̂ δt
)

(94)

The quantity ϕ can now be removed from the state vector, giving the following seven-

component “global” truth state vector and six-component “local” error-state vector, respec-

tively:

xr =





q

MLβ



 , ∆xr =





δϑ

ML∆β



 (95)

The true rate is given by Eq. (32c) using a finite-difference approximation for ϕ̇

ω =ML

(

ϕk+1 −ϕk

δt
− β − ηv

)

(96)

This gives the attitude rate error as

∆ω =ML

(−vek+1
+ vek

δt
−∆β − ηv

)

(97)

Inserting this into the error dynamics of Eqs. (41a) and (41b) gives

∆ẋr =





−[ω̂×] −I3
03×3 03×3



∆xr +





ML
(

−vek+1
+ vek

)

/δt−MLηv

MLηu



 (98)
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The same logic as that leading to Eq. (44) gives

∆xr
k+1 = Φ̃(tk+1, tk)∆xr

k +

∫ tk+1

tk

Φ̃(tk+1, τ)





−MLηv(τ)

MLηu(τ)



 dτ

+





Φ̄(tk+1, tk)M
L
(

−vek+1
+ vek

)

03





(99)

The covariance of the reduced state propagates by

P r
k+1 = Φ̃(tk+1, tk)P

r
k Φ̃

T (tk+1, tk) +Qr (100)

The process noise covariance Qr is the three-axis equivalent of Eq. (29). It is the sum of

independent contributions from the second and third terms on the right side of Eq. (99). The

second term gives the same process noise covariance matrix as the conventional rate gyro-

based estimator, which is given by Eqs. (86)–(89) ifM = I3 and the gyros have identical noise

characteristics. The third term gives an additional contribution of 2Φ̄(tk+1, tk)Q̃eΦ̄
T (tk+1, tk)

to Q11k .

The angular rate estimate is given by

ω̂r
k+1,k =

1

δt
ML

(

ϕ̃k+1 − ϕ̃k − β̂k δt
)

(101)

The error in this estimate is

∆ωr
k+1,k =

1

δt
ML

[

−vek+1
+ vek −∆βkδt−Nv(tk+1, tk)

]

(102)

and its error-covariance is given by

P r
ωωk+1

=
2

δt2
Q̃e +

1

δt
Q̃v + P r

ββk
+

1

3
Q̃uδt (103)

This is simpler than Eq. (80), but the two expressions take the same form if Pk satisfies

Eq. (63).

The attitude measurement update equations are the same as those for the full order

RIG-based Kalman filter, except for obvious changes due to the reduced dimensionality of

the state vector.
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Table 1. Rate-Integrating Gyro Extended Kalman Filter

Initialize

x̂−

0 ,







q̂−

0

β̂−

0

ϕ̂−

0






=







q̂0

β̂0

ϕ̂0







P−

0 = P0

Gain
Kk = P−

k

[

H̃k(x̂
−

k ) 03N×6

]T [

H̃k(x̂
−

k )P
−

ϑϑk
H̃T

k (x̂
−

k ) +Rk

]

−1

H̃k(x̂
−

k ) =







[

A(q̂−

k )r1×
]

...
[

A(q̂−

k )rN×
]







∣

∣

∣

∣

∣

∣

∣

tk

Update P+
k =

(

I9 −Kk

[

H̃k(x̂
−

k ) 03N×6

])

P−

k

∆x̂+
k ,







δϑ̂+
k

∆β̂+
k

∆ϕ̂+
k






= Kk

[

ỹk − hk(x̂
−

k )
]

hk(x̂
−

k ) =







A(q̂−

k )r1
...

A(q̂−

k )rN







∣

∣

∣

∣

∣

∣

∣

tk

q̂∗ = q̂−

k +
1

2
Ξ(q̂−

k )δϑ̂
+
k

q̂+
k = q̂∗/‖q̂∗‖

MLβ̂+
k =MLβ̂−

k +∆β̂+
k

MLϕ̂+
k =MLϕ̂−

k +∆ϕ̂+
k

Propagation ψ̂k+1, k =MLϕ̃k+1 −MLϕ̂k −MLβ̂kδt

q̂k+1 = exp
(

1
2
[ψ̂k+1, k⊗]

)

q̂k

MLβ̂k+1 =MLβ̂k

MLϕ̂k+1 =MLϕ̃k+1

Pk+1 = Φeff(tk+1, tk)Pk Φ
T
eff(tk+1, tk) +G(tk+1, tk)QG

T (tk+1, tk)

Algorithm Summaries

Table 1 shows the RIG MEKF algorithm for attitude estimation. First, the estimated

quaternion, bias vector, and RIG vectors, as well as the error-covariance are initialized. The

table assumes that an update occurs before any gyro propagation, but this assumption is
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not essential. The Kalman gain is computed, and the state vector and covariance matrix

are updated. Note that an explicit reset operation is not needed because δϑ̂−

k is always zero

in this formulation. The updated estimates and error-covariance are then propagated. It is

important to realize that the sampling rate of the RIG measurement is usually higher than

the sampling rate of the attitude measurement, so there may be many propagation steps

between successive attitude measurements. For this reason, superscripts − or + are not

shown in the propagation equations. A series of propagations begins with x̂+ and P+ from

the previous update and ends with x̂− and P− for the following update. Table 2 shows the

algorithm for the reduced-order RIG MEKF for attitude estimation. The steps are the same

as the full-order RIG MEKF in Table 1.
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Figure 1. Availability of Stars

Star Tracker Simulation

This section shows the performance of the RIG MEKF using simulated RIG and star

tracker data to estimate the attitude of an Earth-pointing spacecraft in an equatorial 350

km circular orbit, which is equivalent to a 91.5 minute orbital period. The spacecraft’s z-

axis is pointed in the nadir direction, the y-axis is pointed in the negative orbit momentum’s

vector, and the x-axis is pointed in the orbit velocity direction. The true angular velocity is

given by ω(t) = [0 − 1.11445× 10−3 0]T rad/sec.

The star tracker is not assumed to output a quaternion, but to return unit vector obser-

vations in the body frame of individual stars that are simulated by

b̃i =
1

√

1 + α̃2
i + β̃2

i









−α̃i

−β̃i
1









(104)
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Table 2. Reduced Rate-Integrating Gyro Extended Kalman Filter

Initialize
x̂r−
0 ,

[

q̂−

0

β̂−

0

]

=

[

q̂0

β̂0

]

P r−
0 = P r

0

Gain
Kr

k = P r−
k

[

H̃k(x̂
r−
k ) 03N×3

]T [

H̃k(x̂
r−
k )P r−

ϑϑk
H̃T

k (x̂
r−
k ) +Rk

]

−1

H̃k(x̂
r−
k ) =







[

A(q̂−

k )r1×
]

...
[

A(q̂−

k )rN×
]







∣

∣

∣

∣

∣

∣

∣

tk

Update P r+
k =

(

I6 −Kr
k

[

H̃k(x̂
r−
k ) 03N×3

])

P r−
k

∆x̂r+
k ,

[

δϑ̂+
k

∆β̂+
k

]

= Kr
k

[

ỹk − hk(x̂
r−
k )
]

hk(x̂
r−
rk
) =







A(q̂−

k )r1
...

A(q̂−

k )rN







∣

∣

∣

∣

∣

∣

∣

tk

q̂∗ = q̂−

k +
1

2
Ξ(q̂−

k )δϑ̂
+
k

q̂+
k = q̂∗/‖q̂∗‖

MLβ̂+
k =MLβ̂−

k +∆β̂+
k

Propagation ψ̂k+1, k =MLϕ̃k+1 −MLϕ̃k −MLβ̂kδt

q̂k+1 = exp
(

1
2
[ψ̂k+1, k⊗]

)

q̂k

MLβ̂k+1 =MLβ̂k

P r
k+1 = Φ̃(tk+1, tk)P

r
k Φ̃

T (tk+1, tk) +Qr

where α̃i and β̃i are focal plane measurements. Their respective true quantities are denoted

by αi and βi. Defining the 2× 1 vector γi , [αi βi]
T , then the measurement model follows

γ̃i = γi + vi (105)

where vi is a zero-mean Gaussian noise process. A frequently used covariance for vi is given
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Figure 2. RIG MEKF Errors and 3σ Bounds

by [16]

RFOCAL
i =

σ2

1 + d (α2
i + β2

i )









(1 + d α2
i )

2 (d αiβi)
2

(d αiβi)
2 (1 + d β2

i )
2









(106)

where d is set to 1 and σ = (0.005/3)× (π/180) rad. Note that Eqs. (104)–(106) are used

to generate the simulated measurements, while Eq. (8) is used in the RIG MEKF, which

approximates the actual covariance. The star tracker can sense up to 10 stars in a 6◦ × 6◦

field-of-view, and the star catalog contains stars up to a magnitude of 6.0, the assumed star

tracker sensitivity limit. The star tracker’s boresight is defined by its corresponding sensor

z-axis, which is assumed to be along the negative spacecraft body z-axis. Star images are
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taken at 1-second intervals. A plot of the number of available stars is shown in Figure 1.

The spacecraft is assumed to be equipped with three RIGs with their boresights along

the spacecraft body axes. The noise parameters for each axis of the RIG measurements are

equal with Qe = σ2
eI3×3, Qu = σ2

uI3×3, and Qv = σ2
vI3×3. The specific values for σe, σu, and

σv are σe = 5×10−6 rad, σu =
√
10×10−10 rad/sec3/2, and σv =

√
10×10−7 rad/sec1/2. The

initial bias for each axis is given by 0.1 deg/hr. The RIG measurements are output every

0.1 seconds, i.e. 10 times faster than the star tracker measurements. The initial attitude

estimate is given by its true value. The initial bias estimates are all set to zero, and the

initial RIG angle estimates are set to their measured values. The initial error-covariance for

the attitude-estimate matrix is isotropic with a 3σ value of 1 deg. The error-covariance for

the bias-estimate matrix is isotropic with a 3σ value of 1 deg/hr, and the error-covariance

for the RIG-estimate matrix is isotropic with a variance of σ2
e .

The results in Figure 2 show good filter convergence, consistent with results obtained

using rate gyros. All errors are within their respective 3σ bounds. Figure 2(a) shows how

the attitude errors slightly increase at times when fewer stars are available, which is expected.

The attitude 3σ bounds for the off-boresight axes at steady-state are about 16 µrad. The

single-axis case gives an analytical steady-state 3σ bound of about 17 µrad [7, 13]. The

bias 3σ bounds for the off-boresight axes at steady-state are about 6.4 × 10−3 deg/hr. The

analytic steady-state single-axis 3σ estimate is about 6.5 × 10−3 deg/hr. The RIG angle

3σ bounds for the off-boresight axes at steady-state are about 1.5 × 10−5 rad. The steady-

state single-axis analysis gives a 3σ bound of about 1.5 × 10−5 rad. This shows how the

steady-state single-axis results can be used to accurately assess the performance of the full

three-axis case.

Results of the reduced-order RIG MEKF using the same simulation parameters are shown

in Figure 3. The attitude errors in Figure 3(a) exhibit much more fluctuation due to the

number of stars than the errors shown in Figure 2(a). The single-axis case gives a 3σ bound of

about 77 µrad, which is slightly larger than the average errors seem in Figure 3(a). The bias

3σ bounds for the off-boresight axes at steady-state are about 0.26 deg/hr. The single-axis

case gives a 3σ bound of about 0.27 deg/hr. Good filter convergence is again seen. All errors

are within their respective 3σ bounds, which seems to show that although correlations are

ignored in the reduced-order filter, the estimates themselves are at least consistent. However,

the estimate errors are much larger using the reduced-order filter than the full-order filter.

This is consistent with the single-axis analysis, which shows that ignoring the correlations

in the measurements greatly overestimates the contributions of the RIG output noise.

Figure 4 shows the results of a third simulation using the standard MEKF filter that does

not take the σe term into account [7, 11]. The RIG measurements are simulated using the

same gyro noise parameters as the other simulations: σe = 5× 10−6 rad, σu =
√
10× 10−10
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Figure 3. Reduced-Order RIG MEKF Errors and 3σ Bounds

rad/sec3/2, and σv =
√
10 × 10−7 rad/sec1/2. A finite difference of the RIG angles is taken

to produce angular rate observations. This filter is equivalent to the reduced filter of Table

2 using RIG outputs while setting σe = 0 in the filter. The bias-estimate errors and their

3σ bounds agree very closely with the results plotted in Figure 1, except for some initial

transients. The attitude errors on all three axes and the 3σ bounds on the star tracker’s

boresight axis also agree after initial transients have died out, but the standard MEKF filter

underestimates the variance of the attitude errors on the other two axes. This shows that

naively ignoring a nonzero value of σe may produce inconsistent estimates. Comparison of

Figures 3 and 4 shows, though, that completely ignoring the RIG measurement output noise

can be preferable to including it in a filter that does not augment the state vector with RIG
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angle parameters.
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Figure 4. Standard MEKF Attitude Estimator Results

Conclusions

This paper presents two filters for attitude estimation that incorporate rate-integrating

gyros. The first filter uses an augmented state approach that accounts for correlations

between contributions of the rate-integrating gyro output noise to the angle variance, while

the second one ignores these correlations. Simulation results involving a star tracker coupled

with rate-integrating gyros in a multiplicative extended Kalman framework validate that

both filters are consistent estimators, but that ignoring the correlations results in significantly

larger attitude estimation errors. This is consistent with analytical expressions for the single-

axis case, which show that ignoring these correlations overestimates the gyro output noise

contribution to the process noise covariance. These results are also compared with a rate-

gyro-based filter using finite differences of rate-integrating gyro outputs and ignoring the

measurement noise in these outputs. This comparison shows that naively ignoring the output

noise can produce acceptable attitude and bias estimates if it is not excessively large, but

the filter may be inconsistent in producing erroneously small estimates of its errors. The

approach shown in this paper can easily be extended to other applications, such as inertial

navigation using rate-integrating gyros, by simply appending the state vector to estimate

other states, such as position, velocity, and accelerometer biases.
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Appendix: Modeling Rate-Integrating Gyro Noise

Equations to model RIG noise in the single-axis case are derived here. These can be

used in the three-axis case under the usual assumption that the matrices Qe, Qu and Qv are

diagonal. In the gyro model shown in Ref. [14] the bias β and angle output ϕ of a RIG obey

βk+1 = βk +

∫ tk+1

tk

ηu(τ) dτ (A.1a)

ϕk+1 = ϕk +

∫ tk+1

tk

ω̃(τ) dτ = ϕk +

∫ tk+1

tk

[ω(τ) + β(τ) + ηv(τ)] dτ

= ϕ̄+

∫ tk+1

tk

∫ τ

tk

ηu(τ
′′) dτ ′′ dτ +

∫ tk+1

tk

ηv(τ) dτ

(A.1b)

where

ϕ̄ , ϕk + βk δt+

∫ tk+1

tk

ω(τ) dτ (A.2)

The zero-mean processes ηv and ηu have autocorrelations E{ηv(t) ηv(τ)} = σ2
v δ(t − τ),

E{ηu(t) ηu(τ)} = σ2
u δ(t − τ), respectively, and E{ηv(t) ηu(τ)} = 0. To obtain the correct

means, the modeled quantities, indicated by the subscript m, must be given by

ϕmk+1
= ϕmk

+ βmk
δt+

∫ tk+1

tk

ω(τ) dτ + zero-mean random number

= ϕ̄m + zero-mean random number

(A.3a)

βmk+1
= βmk

+ zero-mean random number (A.3b)

where the random numbers, which turn out to be correlated, must be chosen so that the

second-order statistics of the modeled quantities agree with those of the true equations. The

autocorrelation of the RIG drift bias is

E
{

β2
k+1

}

= E

{[

βk +

∫ tk+1

tk

ηu(τ) dτ

] [

βk +

∫ tk+1

tk

ηu(τ
′) dτ ′

]}

= E
{

β2
k

}

+ σ2
u

∫ tk+1

tk

∫ tk+1

tk

δ(τ − τ ′) dτ ′ dτ = E
{

β2
k

}

+ σ2
uδt

(A.4)

Therefore, RIG drift bias can be modeled by

βmk+1
= βmk

+ σuδt
1/2Nu (A.5)
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where Nu is a zero-mean random number with unit variance. The correlation of the drift

bias and angle is given by

E {βk+1ϕk+1} = E

{[

βk +

∫ tk+1

tk

ηu(τ
′) dτ ′

]

×
[

ϕ̄+

∫ tk+1

tk

∫ τ

tk

ηu(τ
′′) dτ ′′ dτ +

∫ tk+1

tk

ηv(τ) dτ

]}

= E {βkϕ̄}+ σ2
u

∫ tk+1

tk

∫ tk+1

tk

∫ τ

tk

δ(τ ′ − τ ′′) dτ ′′ dτ ′ dτ

= E {βkϕ̄}+ σ2
u

∫ tk+1

tk

(τ − tk) dτ = E {βkϕ̄}+
1

2
σ2
uδt

2

(A.6)

This equation is satisfied by modeling the RIG output as

ϕmk+1
= ϕ̄mk

+
1

2
σuδt

3/2Nu + cNv

= ϕmk
+

1

2

[

βmk+1
+ βmk

]

δt +

∫ tk+1

tk

ω(τ) dτ + cNv

(A.7)

where c is a constant to be determined, and Nv is a zero-mean, unit-variance random number

uncorrelated withNu. To evaluate c the autocorrelation of the RIG angle output is computed:

E
{

ϕ2
k+1

}

= E

{[

ϕ̄+

∫ tk+1

tk

∫ τ ′

tk

ηu(τ
′′′) dτ ′′′ dτ ′ +

∫ tk+1

tk

ηv(τ
′) dτ ′

]

×
[

ϕ̄+

∫ tk+1

tk

∫ τ

tk

ηu(τ
′′) dτ ′′ dτ +

∫ tk+1

tk

ηv(τ) dτ

]}

= E
{

ϕ̄2
}

+ σ2
u

∫ tk+1

tk

∫ tk+1

tk

∫ τ

tk

∫ τ ′

tk

δ(τ ′′′ − τ ′) dτ ′′′ dτ ′′ dτ ′ dτ

+ σ2
v

∫ tk+1

tk

∫ tk+1

tk

δ(τ − τ ′) dτ ′ dτ

(A.8)

Now

∫ tk+1

tk

∫ tk+1

tk

∫ τ

tk

∫ τ ′

tk

δ(τ ′′′ − τ ′) dτ ′′′ dτ ′′ dτ ′ dτ =

∫ tk+1

tk

∫ tk+1

tk

min(τ ′ − tk, τ − tk)dτ
′ dτ

=

∫ δt

0

∫ δt

0

min(x, y) dx dy =

∫ δt

0

(
∫ y

0

x dx+

∫ δt

y

y dx

)

dy

=

∫ δt

0

[

1

2
y2 + y (δt− y)

]

dy =
1

3
δt3

(A.9)
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and the σ2
v integral is the same as the σ2

u integral in Eq. (A.4). Therefore, Eq. (A.8) becomes

E
{

ϕ2
k+1

}

= E
{

ϕ̄2
}

+
1

3
σ2
uδt

3 + σ2
vδt = E

{

ϕ̄2
}

+
1

4
σ2
uδt

3 + c2 (A.10)

Since E {ϕ̄2} = E {ϕ̄2
m} by construction, this means that

c =

(

σ2
vδt+

1

12
σ2
uδt

3

)1/2

(A.11)

Then Eq. (A.7) simply becomes

ϕmk+1
= ϕmk

+
1

2

[

βmk+1
+ βmk

]

δt+

∫ tk+1

tk

ω(τ) dτ +

(

σ2
vδt+

1

12
σ2
uδt

3

)1/2

Nv (A.12)

The modeled measurement is then given by ϕ̃mk
= ϕmk

+ve, where ve is a zero-mean Gaussian

white-noise process with variance σ2
e .

The variance of ϕ̃mk+1
is now derived. Substituting Eq. (A.5) into Eq. (A.12), and using

ϕ̃mk+1
= ϕmk+1

+ ve leads to

ϕ̃mk+1
= ϕmk

+ βmk
δt+

∫ tk+1

tk

ω(τ) dτ +
1

2
σuδt

3/2Nu

+

(

σ2
vδt+

1

12
σ2
uδt

3

)1/2

Nv + ve

(A.13)

The expectation of this equation given ϕmk
and βmk

is

E
{

ϕ̃mk+1
|ϕmk

, βmk

}

= ϕmk
+ βmk

δt +

∫ tk+1

tk

ω(τ) dτ (A.14)

The variance, denoted by Rmk+1
, is now computed through

Rmk+1
= E

{

(

1

2
σuδt

3/2Nu

)2
}

+

(

σ2
vδt+

1

12
σ2
uδt

3

)

E
{

N 2
v

}

+ E
{

v2e
}

(A.15)

Taking the expectations and collecting terms gives

Rmk+1
= σ2

vδt+
1

3
σ2
uδt

3 + σ2
e (A.16)

Note that this is equivalent to the upper left corner of Q(δt) in Eq. (24).
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